• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊
  • Scopus, DOAJ, CA, AJ, JST收录期刊
高级检索

基于集成学习方法的冲击地压危险性预测研究

Research on prediction of rock burst risk based on ensemble learning method

  • 摘要: 为了进一步提高冲击地压危险性预测的准确性,利用集成学习方法对冲击地压发生的主要因素指标进行了分析,分别采用集成学习方法中7种分类预测模型对冲击地压危险性进行了预测,实验结果表明, 7种模型均具有一定的可靠性,将模型的准确度和海明损失作为评价指标,得出XGBoost算法具有较高的预测性能,可以相对有效地对冲击地压的危险性进行预测。最后,利用SHAP值对XGBoost模型进一步解释,冲击地压危险性受弹性能指数的影响最大。

     

    Abstract: In order to further improve the prediction accuracy of the rock burst risk, the ensemble learning (EL) method was used to analyze the main factors and indicators of the occurrence of rock burst. Seven kinds of classification prediction models in the EL method were respectively used to predict the rock burst risk. The experimental results show that all the seven models have certain reliability. Taking the accuracy and Haiming loss of the models as evaluation indexes, it is concluded that the XGBoost algorithm has high prediction performance and can predict the rock burst risk relatively effectively. Finally, the SHAP value is used to further explain the XGBoost model. The elastic energy index has the greatest influence on the rock burst risk.

     

/

返回文章
返回