基于GRU与非参数核密度估计的煤矿工作面瓦斯浓度区间预测模型
Prediction model of coal mine face gas concentration interval based on GRU and non-parametric kernel density estimation
- 
                            摘要: 瓦斯浓度预测对于瓦斯灾害防治具有重要意义。针对瓦斯浓度预测中预测精度低、泛化能力弱和单点预测方法描述信息过于单一的问题,提出一种基于GRU和NKDE的区间预测模型。首先,采用GRU网络实现瓦斯浓度的点预测,并在此基础上构建一组瓦斯浓度预测误差数据集;然后,以渐进积分均方误差为准则进行窗宽优化,实现非参数核密度估计;最后,通过叠加点预测结果,得到不同置信度下的瓦斯浓度区间预测结果,并进行评估。选取不同工作面的2组历史数据进行验证,研究结果表明:与SVM、BP和ARIMA等方法相比,GRU网络预测精度更高;基于GRU网络预测生成的误差数据集,与高斯模型及随机窗宽的非参数核密度估计模型相比,最优窗宽的非参数核密度估计模型更接近真实的预测误差分布,能够有效预测煤矿瓦斯浓度的区间。研究结果可为煤矿安全管理提供参考依据。Abstract: Accurate gas concentration prediction is essential for preventing and controlling gas - related disasters in coal mines. However,existing methods often lack accuracy, generalizability, and rely solely on point predictions. To address these challenges,we propose an interval prediction model that combines a gated recurrent unit (GRU) network with nonparametric kernel density estimation (NKDE). The GRU network first generates point predictions of gas concentration,from which we create a dataset of prediction errors. We then use kernel density estimation,optimizing the bandwidth based on mean squared error,to model the distribution of these errors. By integrating the GRU predictions with the estimated error distribution, we construct prediction intervals at various confidence levels. We validate our approach using historical data from two different coal mine sites. Results show that the GRU model outperforms support vector machines (SVM),backpropagation neural networks (BP), and ARIMA models in prediction accuracy. Additionally, the optimized kernel density estimation provides a more accurate representation of prediction errors than both the Gaussian model and kernel density estimates with arbitrary bandwidths,resulting in more reliable prediction intervals. This method offers a practical tool to enhance safety management in coal mines.
 
             
						  
						 下载:
下载: