Mining Safety & Environmental Protection

■ 3434 ■ 张逸龙,吴彦,方书昊,等.赤峪煤矿煤层突出危险性预测敏感指标的确定[J].矿业安全与环保,2022,49(3):84-87.

ZHANG Yilong, WU Yan, FANG Shuhao, et al. Determination of sensitive index for prediction of coal outburst risk in Chiyu Coal Mine[J]. Mining Safety & Environmental Protection, 2022, 49(3):84-87.

DOI: 10. 19835/j. issn. 1008-4495. 2022. 03. 014

赤峪煤矿煤层突出危险性预测敏感指标的确定

张逸龙1,吴 彦1,方书吴1,廖 奇1,杨印朝2,朱红青1

(1. 中国矿业大学(北京) 应急管理与安全工程学院,北京 100083; 2. 开滦(集团)有限责任公司,河北 唐山 063020)

摘要:以赤峪煤矿 2 号煤层为研究对象,采用灰色关联分析法对钻屑量 S 和钻屑瓦斯解吸指标 Δh_2 ("二指标")进行预测,确定"二指标"与 2 号煤层发生突出的可能性之间的敏感性;结合"三率法"(预测突出率、预测突出准确率、预测不突出准确率)对突出危险性预测指标进行分析,确定临界值;采用 "三率法"对"二指标"进行分析,验证临界值的有效性。研究结果表明:灰色关联度 $P(S)=0.909>P(\Delta h_2)=0.896$,S 作为预测指标的敏感度更高;确定了 S 和 Δh_2 临界值分别为 T 4 kg/m、200 Pa。现场效果检验表明,所确定的 2 号煤层突出危险性预测指标临界值合理。

关键词:煤与瓦斯突出;突出预测;敏感性指标;临界值;灰色关联分析;三率法

中图分类号:TD713

文献标志码:A

文章编号:1008-4495(2022)03-0084-04

Determination of sensitive index for prediction of coal outburst risk in Chiyu Coal Mine

ZHANG Yilong¹, WU Yan¹, FANG Shuhao¹, LIAO Qi¹, YANG Yinchao², ZHU Hongqing¹
(1. School of Emergency Management and Safety Engineering, China University of Mining & Technology (Beijing),
Beijing 100083, China; 2. Kailuan(Group) Co., Ltd., Tangshan 063020, China)

Abstract: Taking No. 2 coal seam of Chiyu Coal Mine as the research object, the grey correlation analysis method was used to predict the drilling cuttings quantity S and gas desorption index of drilling cuttings Δh_2 (the "two indicators") and to determine the sensitivity between the "two index" and the possibility of outburst of No. 2 coal seam; combined with "three rate method" (predicted outburst rate, predicted outburst accuracy rate, predicted non-outburst accuracy rate), the prediction index of outburst risk was analyzed and the critical value was determined; the "three rate method" was used to analyze the "two indicators" and verify the validity of the critical value. The results show that: grey correlation degree $P(S) = 0.909 > P(\Delta h_2) = 0.896$, the S is more sensitive as a predictor; the critical values of S and Δh_2 are determined to be 7.4 kg/m and 200 Pa, respectively. The field effect test shows that the critical value of the prediction index of No. 2 coal seam outburst risk is reasonable

Keywords: coal and gas outburst; outburst prediction; sensitive index; critical value; grey correlation analysis; three rate method

在工作面推进过程中,其前方煤体处于采前增压—卸压—恢复阶段,且随着工作面持续推进该现象重复出现^[1],煤岩体内部孔隙结构及渗流状态都会发生改变,容易造成瓦斯的不均衡涌出,从而引发

收稿日期:2021-07-27;2021-12-07修订

基金项目:国家自然科学基金项目(52064046,51804311) 作者简介:张逸龙(1989—),男,黑龙江鹤岗人,博士研究 生,主要研究方向为矿山灾害防治。E-mail:zhangyilongck@ 163.com。 瓦斯事故,因此研究煤层突出敏感性指标至关重要 $[^{2-3]}$ 。目前,世界各国煤矿所采用的瓦斯预测方法已超过 100 多种 $[^{4-8]}$,其中,在我国主要是以钻屑瓦斯解吸指标(Δh_2 和 K_1)、钻屑量指标(S)、钻孔瓦斯涌出初速度指标(q)等 $[^{9-11}]$ 作为煤与瓦斯突出预测指标。杨明军 $[^{12]}$ 采用"三率法"对煤层掘进考察区的突出预测敏感指标及其临界值进行了研究;张书金等 $[^{13]}$ 利用"三率法"和突出危险性相关性分析2种方法,对贵州突出矿区预测预报敏感性指标进行了研究;雷红艳 $[^{14]}$ 建立了钻屑瓦斯解吸指标 K_1

与 ΔP 的量化关系以快速确定钻屑瓦斯解吸指标 K_1 临界值。"二指标"指的是钻屑瓦斯解吸指标(Δh_2) 及钻屑量指标(S),"二指标"对于煤与瓦斯突出预测及防治起到了关键性的作用^[15]。灰色系统理论主要基于对灰色理论中的各因素间的影响进行分析,包括系统行为分析和系统因素分析^[16-18]。

由于各个矿区地质条件及煤层性质差异,不同 突出矿井预测的敏感性指标亦不同,需要对同一区域危险性进行相关研究,并确定其临界值 [19]。基于此,以赤峪煤矿 2 号煤层为研究对象,通过灰色关联分析法对"二指标"(S 和 Δh_2)进行预测,以期确定哪个指标的敏感性更强。同时,结合"三率"法对工作面突出预测及效果检验的实测数据进行分析论证,以确定煤层突出预测敏感指标临界值。

1 突出预测指标敏感性灰色关联模型构建

1.1 试验地点概况

赤峪煤矿为突出矿井,2号煤层平均厚度 1.8 m,平均倾角 7°,最大瓦斯压力为 2.66 MPa,最大原始瓦斯含量为 11.29 m³/t。C1203 运输巷、回风巷掘进工作面每掘进 5 m 进行一次区域验证,每个循环保留不小于 2 m 的超前距。钻孔在掘进工作面上下两层,各布置 3 个直径 42 mm、深度 8 m 的钻孔。中间钻孔沿巷道掘进方向,两边钻孔在两侧向外施工。回采工作面区域验证在沿其推进的方向上每隔 15 m 间距位置施工一个直径 42 mm、深度 10 m 的钻孔。

1.2 模型构建

将 S 和 Δh_2 作为映射量指标,建立表征突出风险大小的系统映射函数如下:

$$E_1(i) = f(X) \tag{1}$$

$$f(X) = \prod_{i=1}^{m} X_{i}(i) \tag{2}$$

式中:X 为由 $X_j(i)$ 组成的阶矩阵;f(X) 为映射量函数; $X_j(i)$ 为第 i 次预测的 j 指标实际测值;i 为测定数据组序号, $i=1,2,\cdots,n;n$ 为指标数据组数;j 为指标数据序列号, $j=1,2,\cdots,m;m$ 为指标体系采用的指标容量.取 2

经过量纲变换后的系统映射量为:

$$E_2(i) = f(X') \tag{3}$$

灰色关联函数 $p_i(i)$ 的计算公式如下^[20]:

$$p_{j}(i) = \frac{\min(i) |X_{0}(i) - X_{j}(i)| + K\max(i) |X_{0}(i) - X_{j}(i)|}{|X_{0}(i) - X_{j}(i)| + K\max(i) |X_{0}(i) - X_{j}(i)|}$$

式中: $p_j(i)$ 为第i 时刻指标序列 X_j 与参考序列 X_0 的

相对差值,即 X_j 对 X_0 在i时刻的关联系数;K为分辨系数,由于系统中各指标的平等性,取 $0.5;X_0(i)$ 为参考序列,即建立的系统映射量。

各指标与突出危险性的关联度表示如下:

$$P_{i} = \frac{1}{n} \sum_{i=1}^{n} p_{j}(i) \tag{5}$$

2 突出预测指标敏感性数值计算

记录是否出现卡钻及瓦斯异常等动力现象,测试了 C1203 工作面运输巷的"二指标"数据,每个指标各 131 组数据。钻屑量 S_{max} 和 Δh_{2max} 曲线见图 1。

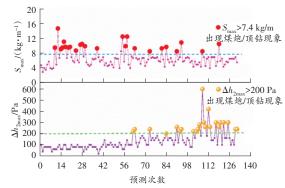


图 1 钻屑量 S_{max} 和 $\Delta h_{2\text{max}}$ 曲线

由图 1 可知,S 的最大值普遍大于 4 kg/m,表明 C1203 工作面巷道在掘进过程中,煤层受地应力影响较大。 Δh_2 在前期小于 100 Pa,之后 Δh_2 首次超过 200 Pa 且振动幅度变大,表明巷道掘进进入了瓦斯含量大且压力高的区域,发生突出的可能性也在逐渐增高。

将图 1 各指标进行无量纲化处理, 结果见图 2(a) 和(b)。

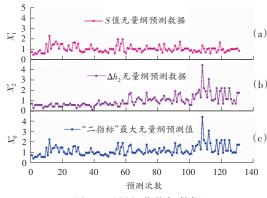


图 2 无量纲化指标数据

由图 2(a) 和(b) 可以看出,S 和 Δh_2 的曲线变化大体同步,例如出现典型瓦斯动力现象时 2 条曲线均明显升高。

设灰色关联分析模型参考序列为 X_0 ,基于相对优化原则,选取各指标中最优值作为灰色关联分析参考值,见图2(c)。

将"二指标"数据代入式(4)和(5),计算得到相对差值,求得 $S_{\lambda}\Delta h$,与突出危险性之间的灰色关联度

分别为:P(S) = 0.909, $P(\Delta h_2) = 0.896$,钻屑量 S 与突出危险性的灰色关联度更高,敏感度关系为 $S > \Delta h_2$ 。

3 突出预测敏感指标临界值

3.1 钻屑量指标临界值

分析现场测试得到的 131 组数据(见图 1),结合 S 的参考临界值,得出:钻屑量 S 单项指标超限 72 次,其中出现煤炮、顶钻等异常现象 26 次;未超限 59 次,其中出现煤炮、顶钻等异常现象 4 次。对 S 的参考临界值为 6 kg/m 的情况进行"三率"法分析,计算得到预测突出率为 54.96%,预测突出准确率为 36.11%,预测不突出准确率为 91.53%,可见预测突出率偏高,预测突出准确率偏低,尽管保障了掘进工作面的安全,但需要进行瓦斯治理的施工面积较大,增加了防突措施工程量。

选取8个待定临界值分别计算相对应的预测突出率、预测突出准确率和预测不突出准确率,结果见表1。

表 1 C1203 工作面 S 临界值"三率"法分析

S/(kg·m ⁻¹)	n	n_1	n_2	n_3	$\eta_1/\%$	$\eta_2/\%$	$\eta_3/\%$
6. 0	72	26	59	54	54. 96	36. 11	91. 53
6.8	40	25	91	85	30. 53	62. 50	93.41
7. 0	27	22	104	95	20. 61	81.48	91. 35
7. 2	25	22	106	97	19. 08	88.00	91.51
7. 4	25	22	106	97	19.08	88.00	91.51
7. 6	25	22	106	97	19.08	88.00	91.51
7.8	25	22	106	97	19.08	88.00	91.51
8. 0	25	22	106	97	19.08	88.00	91.51

注:n 为预测有突出危险次数; n_1 为预测有突出危险次数中确实有突出危险的次数; n_2 为预测不突出次数; n_3 为预测不突出次数中确实没有突出危险的次数; η_1 为预测突出率; η_2 为预测突出准确率; η_3 为预测不突出准确率。

由表 1 可见,钻屑量 S 在 7. 2~8.0 kg/m 内预测 突出率均为 19.08%,预测突出准确率为 88.00%,预测不突出准确率 91.51%。由于 131 组突出危险性 预测数据中的最大 S 值均不在 7.2~8.0 kg/m 内,需 要对 S 的临界值作进一步分析。

选取 C1204 回风巷掘进工作面突出危险性预测的 121 组数据对钻屑量指标 S 的临界值范围进行分析。根据 S 临界值范围,S 值单项指标超限 61 次,其中发生煤炮、夹钻、喷孔等瓦斯动力现象共 25 次。

选取5个待定临界值分别计算"三率",结果见表2。

表 2 C1204 工作面 S 临界值"三率"法分析

S/(kg·m ⁻¹)	n	n_1	n_2	n_3	$\eta_1/\%$	$\eta_2/\%$	$\eta_3/\%$
7. 2	51	25	70	70	42. 15	49. 02	100
7. 4	48	24	73	72	39. 67	50.00	98. 63
7. 6	43	21	78	74	35. 54	48. 84	94. 87

表2(续)

$S/(kg \cdot m^{-1})$	n	n_1	n_2	n_3	$\eta_1/\%$	$\eta_2/\%$	$\eta_3/\%$
7.8	42	20	79	74	34. 71	47. 62	93. 67
8. 0	41	19	80	74	33. 88	46. 34	92. 50

由表 2 可知, 当 S 的临界值取 $7.2 \ 7.4 \ kg/m$ 时, 预测不突出准确率(均高于 95%) 明显高于 S 的临界值在 $7.6 \ 8.0 \ kg/m$ 内的准确率, 同时 S 的临界值取 $7.2 \ kg/m$ 时, 预测突出率上升, 预测突出准确率反而有所降低。因此 S 的临界值取 $7.4 \ kg/m$ 较为合适。

3.2 钻屑瓦斯解吸指标 Δh , 临界值

根据现场测试得到的 131 组数据(见图 1),以及 Δh_2 参考临界值,可发现 Δh_2 出现异常现象 16 次;未超限 108 次,其中异常现象 15 次。选取 8 个待定临界值,分别计算"三率",结果见表 3。

表 3 C1203 工作面 Δh , 临界值"三率"法分析

$\Delta h_2/\mathrm{Pa}$	n	n_1	n_2	n_3	$\eta_1/\%$	$\eta_2/\%$	$\eta_3/\%$
100	89	21	42	32	67. 94	23.60	76. 19
120	62	17	69	55	47. 33	27. 42	79. 71
140	55	17	76	62	41.98	30. 91	81. 58
160	40	16	91	76	30. 53	40.00	83. 52
180	27	16	104	89	20. 61	59. 26	85. 58
200	23	16	108	93	17. 56	69. 57	86. 11
220	22	15	109	93	16. 79	68. 18	85. 32
240	18	11	113	93	13. 74	61.11	82. 30

由表 3 可见,当 Δh_2 临界值取 200 Pa 时,预测突出率为 17.56%,预测突出准确率为 69.57%,预测不突出准确率为 86.11%。从整体上看,当 Δh_2 临界值低于 180 Pa 时,预测突出准确率低于 60%,预测突出率却高于 30%,需要进行瓦斯治理的施工面积较大,增加防突措施工程量。当 Δh_2 临界值高于 200 Pa 时,预测突出率降低,但预测突出准确率和预测不突出准确率也会随之下降,导致不安全。当 Δh_2 取值为180 Pa 时,"三率"与 200 Pa 时的最为接近,但效果仍不如 200 Pa 时的结果。综上所述,为保障矿井安全,钻屑瓦斯解吸指标 Δh_2 临界值取 200 Pa 较为合理。

3.3 "二指标"突出预测临界值

对 2 个突出预测指标同时进行"三率"法分析, 当 S=7.4 kg/m, $\Delta h_2=200 \text{ Pa}$ 时, 对突出预测数据进行"三率"法分析, 结果见表 4。

表 4 C1203 工作面 S 和 Δh_2 临界值"三率"法分析

•	N	n	n_1	n_2	n_3	$\eta_1/\%$	$\eta_2/\%$	$\eta_3/\%$
	131	41	31	90	90	31.30	75. 61	100

注:N为总预测次数。

由表 4 可见, 当采用 2 个敏感指标同时预测时,

Mining Safety & Environmental Protection

预测不突出准确率达到了100%,同时预测突出率为31.30%,预测突出准确率达到75.61%。选取2个指标同时开展预测,并没有新增防突措施,实现了经济效益最大化。

3.4 煤层突出预测敏感指标临界值

通过灰色关联分析,得出S的敏感性要略好。而使用"二指标"同时进行突出预测检测出的具有实际突出危险的 31 次中,S 贡献次数为 25 次,占比 80.65%; Δh_2 贡献次数为 23 次,占比 74.19%;其中,"二指标"同时预测有突出风险的次数为 7 次,分别 仅占S 与 Δh_2 单独预测具有突出危险的次数比重为 28.00%和 30.43%。因此,尽管S 值相比于 Δh_2 对突出的敏感性更好,但 Δh_2 仍然具有不可替代性。此外,在图 2 中,"二指标"曲线的变化趋势基本一致,但其中一项指标(Δh_2)超出临界值时,而另一指标(S)达到峰值却并未超出临界值的情况较为常见,说明"二指标"在 2 号煤层的突出预测中均不可或缺。

综上所述,钻屑量 S 和钻屑瓦斯解吸指标 Δh_2 应同时作为 2 号煤层突出预测敏感指标,临界值分别取 7.4~kg/m 和 200~Pa。

4 现场工程应用

2号煤层的各个工作面在掘进和回采期间均按 照突出煤层进行管理,其预测数据见表 5。

		• •						
地 点		Δh_2	$S_{\mathrm{max}}/$	p/	W/			
	地 点	Pa	$(kg \cdot m^{-1})$	MPa	$(m^3\boldsymbol{\cdot} t^{-1})$			
	1203 进风巷	100	4. 5	0.50	4. 77			
	1203 回风巷	140	5. 2	0. 58	5. 43			
	1203 高抽巷	70	4. 2	0.47	4. 48			
	1204 进风巷	120	4. 9	0. 52	5. 22			
	1204 回风巷	160	5. 6	0.61	5. 94			
	1204 高抽巷	60	3. 4	0.41	4. 21			
	1204 开切眼	180	5. 9	0.68	6. 89			

表 5 瓦斯参数测定结果

各个指标的临界值分别为压力小于 0.74 MPa、瓦斯含量小于 8 m³/t、 S_{max} 小于 7.4 kg/m、 Δh_2 小于 200 Pa。由表 5 可见,几个测试地点均没有发生效果检验指标超标情况,瓦斯含量最大为 6.89 m³/t,且在开切眼处,表明选择该类指标是合理的。

5 结论

1) 钻屑量 S 和钻屑瓦斯解吸指标 Δh_2 应同时作为 赤峪煤矿 2 号煤层突出预测敏感指标。通过灰色关联 度建模分析,计算敏感指标与突出危险之间的关联度, 得到灰色关联度结果 $P(S) = 0.909 > P(\Delta h_2) = 0.896$,表明钻屑量 S 作为预测指标的敏感度更高。

- 2)对 C1203、C1204 工作面突出预测数据进行 "三率"法分析,当 Δh_2 为 200 Pa 时,预测突出率为 17.56%,预测突出准确率为 69.57%,预测不突出准确率为 86.11%;当 S 为 7.4 kg/m 时,预测突出率 39.67%,预测突出准确率 50%,预测不突出准确率 为 98.63%。对 2 个指标同时进行"三率"法分析,预测突出率为 31.30%,预测突出准确率为 75.61%,预测不突出准确率达到 100%。确定 S 和 Δh_2 临界值分别为 7.4 kg/m 和 200 Pa。
- 3)通过对 2 号煤层各个工作面的 S 和 Δh_2 的效果检验,证明了其临界值的合理性。随着开采深度的增加,区域效果检验指标(S、 Δh_2)在现场生产过程中需要反复检验,以保证矿井生产的有序进行。

参考文献:

- [1] 段敏克, 蒋长宝, 俞欢, 等. 分级加—卸载条件下原煤的渗透 及能耗特征研究[J]. 岩土力学, 2018, 39(4):1346-1354.
- [2] 郝煜珊,王毅,李泽民.循环加卸载下含瓦斯煤能耗与渗流特性研究[J].中国矿业,2020,29(10):147-151.
- [3] 杨宏民,王兆丰,王松,等. 预抽煤层瓦斯区域防突效果 检验指标临界值研究[J]. 中国安全科学学报,2011, 21(5):114-118.
- [4] 李伟山,王琳,卫晨. LSTM 在煤矿瓦斯预测预警系统中的应用与设计[J]. 西安科技大学学报,2018,38(6): 1027-1035.
- [5] 许满贵,高帅帅,曹艳军,等.基于灰色理论—多元回归分析的瓦斯含量预测[J].煤矿安全,2018,49(9):211-214.
- [6] 李栋,孙振明,李梅,等. 基于混沌粒子群的 AWLSSVM 瓦斯预测研究[J]. 煤矿安全,2020,51(8):193-198.
- [7] 李树刚,马莉,潘少波,等.基于循环神经网络的煤矿工作面瓦斯浓度预测模型研究[J].煤炭科学技术,2020,48(1):33-38.
- [8] 王晓蕾, 姬治岗, 谢怡婷, 等. 采煤工作面瓦斯涌出量预测技术现状及发展趋势 [J]. 科学技术与工程, 2019, 19(33):1-9.
- [9] 张玉柱. 工作面突出危险性预测指标 K_1 临界值研究[J]. 矿业安全与环保,2020,47(6):94-97.
- [10] 唐巨鹏,陈帅,于宁.基于平均有效应力煤与瓦斯突出钻屑量指标研究[J].地球物理学进展,2017,32(1):395-400.
- [11] 齐黎明,卢云婷,关联合,等.煤与瓦斯突出预测敏感指标确定方法探索及应用[J]. 矿业安全与环保,2021,48(3):85-89.
- [12] 杨明军. 基于"三率法"煤巷掘进突出预测敏感指标的确定[J]. 煤炭技术,2014,33(7):43-45.
- [13] 张书金,衡献伟,李青松,等.贵州突出矿区局部突出危险性预测敏感指标研究[J].煤炭科学技术,2016,44(2):89-93.

(下转第93页)

Vol. 49 No. 3 Jun. 2022

后,q、S值分别降低了45%和12%。

3 结论

- 1)钻孔造穴诱突过程中能量耗散机制符合煤体 造穴诱突三维结构模型和推导的瓦斯能量方程。
- 2) 试验矿井煤层瓦斯含量大于 9 m³/t 时宜采 用水力造穴诱突技术,反之宜采用爆破诱突技术,以 此为阈值搭配使用 2 种诱突技术措施,可提高防突 效果。
- 3)水力造穴诱突过程容易造成巷道内瓦斯超限,带来安全问题。大容量、高密封、智能除渣的防喷孔装置有待进一步研发,造穴智能化施工装备技术有待进一步完善。

参考文献:

- [1] 何学秋,周世宁. 煤和瓦斯突出机理的流变假说[J]. 煤 矿安全,1991(10):1-7.
- [2] 蒋承林, 俞启香. 煤与瓦斯突出机理的球壳失稳假说[J]. 煤矿安全,1995(2):17-25.
- [3] 胡千庭,周世宁,周心权.煤与瓦斯突出过程的力学作用 机理[J].煤炭学报,2008,33(12):1368-1372.
- [4] 袁亮,王伟,王汉鹏,等. 巷道掘进揭煤诱导煤与瓦斯突出模拟试验系统[J]. 中国矿业大学学报,2020,49(2): 205-214
- [5] 彭守建,杨文健,周斌,等. 真三维应力状态下煤与瓦斯突出过程中瓦斯压力时空演化规律研究[J]. 岩石力学与工程学报,2020,39(9): 1762-1772.
- [6] 蒋承林, 俞启香. 煤与瓦斯突出过程中能量耗散规律的研究[J]. 煤炭学报, 1996, 21(2):173-178.
- [7] 文光才. 煤与瓦斯突出能量的研究[J]. 矿业安全与环保,2003,36(6):1-3.
- [8] 张庆贺,李宁,段昌瑞. 煤岩破坏过程弹性能与瓦斯膨胀 能演化特性试验研究[J]. 煤矿安全,2019,50(6):32-35.
- [9] 陈鲜展,袁亮,薛生,等. 瓦斯含量法在煤与瓦斯突出能量 分析中的应用[J]. 中国安全科学学报,2017,27(10):

93-98.

- [10] 师皓宇,马念杰,许海涛. 基于能量理论的煤与瓦斯突出机理探讨[J]. 中国安全生产科学技术,2019,15(1): 88-92.
- [11] 姜永东,郑权,刘浩,等. 煤与瓦斯突出过程的能量分析[J]. 重庆大学学报, 2013,36(7):98-101.
- [12] 熊阳涛,黄滚,罗甲渊,等. 煤与瓦斯突出能量耗散理论分析与试验研究[J]. 岩石力学与工程学报,2015,34(增刊2):3694-3702.
- [13] 王刚,武猛猛,程卫民,等. 煤与瓦斯突出能量条件及突出强度影响因素分析[J]. 岩土力学,2015,36(10):2974-2982.
- [14] 舒龙勇,王凯,齐庆新,等. 煤与瓦斯突出关键结构体致 灾机制[J]. 岩石力学与工程学报,2017,36(2):347-356.
- [15] 王亮,廖晓雪,褚鹏,等. 瓦斯抽放穿层钻孔钻扩造穴卸压 增透机理研究[J]. 煤炭科学技术,2021,49(5):75-82.
- [16] 张俊伟. 水力造穴卸压增透技术在底板岩巷中的应用研究[J]. 中国煤炭,2020,46(7):69-72.
- [17] 郝从猛,刘洪永,程远平. 穿层水力造穴钻孔瓦斯抽放效果数值模拟研究[J]. 煤矿安全,2017,48(5):1-4.
- [18] 沈润生. 基于应力监测的煤层水力造穴效果检验技术研究[J]. 煤炭工程,2020,52(11):79-82.
- [19] 于宝种. 松软低透煤层高压射流造穴强化抽放技术研究[J]. 矿业安全与环保,2019,46(6):42-46.
- [20] 胡千庭. 煤与瓦斯突出的力学作用机制及应用研究[D]. 北京: 中国矿业大学(北京), 2007.
- [21] 周晓军,马心校. 煤体钻孔周围应力应变分布规律的试验研究[J]. 矿业安全与环保,1995(2):16-20.
- [22] 浑宝炬,程远平,周红星. 穿层钻孔喷孔周围煤体应力与变形数值模拟研究 [J]. 煤炭科学技术, 2013, 41(10):81-85.
- [23] 朱连山. 关于煤层中的瓦斯膨胀能[J]. 煤矿安全, 1985(2):47-50.

(责任编辑:陈玉涛)

(上接第87页)

- [14] 雷红艳. 钻屑瓦斯解吸指标 K₁ 临界值快速确定方法试验研究[J]. 煤炭科学技术,2019,47(8):129-134.
- [15] 石银斌. 汝箕沟煤矿煤与瓦斯突出危险性区域划分技术[J]. 矿业安全与环保,2010,37(增刊 1):71-72.
- [16] 景国勋,张强,周爱桃.基于灰色系统理论的煤与瓦斯 突出预测[J].中国安全科学学报,2004(8):21-24.
- [17] 朱运华,侯锦秀,陈永超,等.基于灰色关联分析法确定 突出敏感指标[J].煤矿开采,2007,12(3):11-13.
- [18] 延如波,牛雅莉,李金书,等.基于灰色理论确定煤与瓦斯突出预测敏感指标[J].河南工程学院学报(自然科学版),2009,21(4):5-7.
- [19] 顾北方, 靳晓华, 申翔, 等. 突出预测敏感指标研究及其应用[J]. 煤炭技术, 2014, 33(7):60-62.
- [20] 崔杰,党耀国,刘思峰.基于灰色关联度求解指标权重的改进方法[J].中国管理科学,2008,16(5):141-145.

(责任编辑:李琴)